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Abstract

We validate the ability of the simple SIR model to describe the spread
of influenza for large metropolitan areas in the US. We derive an evo-
lutionary equation for the excess death rates due to influenza and esti-
mate parameters in the equation from the US weekly mortality /morbidity
reports using the Random Collocation Least Squares method.
keywords: influenza, parameter estimation, least-squares, SIR model.

1 Introduction

Influenza is a major public health threat. In the U.S. influenza epidemics oc-
cur during the winter months between November and April and are respon-
sible for an average of approximately 20,000 deaths/year [1]- [6]. Weekly
influenza and pneumonia mortality data provide the major national source
of information for monitoring the timing and severity of the yearly influenza
epidemic in the U.S. [4]. Thus, it is of importance to extract basic epi-
demiologic information about yearly influenza epidemics from the reported
mortality data. However, such mortality data are a mixture of deaths from
influenza and from other causes. In this paper, we present a method for sta-
tistically separating influenza related mortality from other source of pneumo-
nia mortality. In addition, our methods, based on the classical SIR epidemic
model, are used to estimate important epidemiologic parameters.

In section 2, we present the mathematical form of the model. In section
3, we give the numerical form of the model that is fit to the mortality data.
Section 4, gives details on the method of random collocation that we use
to estimate parameters. Results are presented in section 5, followed by a
discussion in section 6.

2 The SIR model

Consider the SIR model applied to the confined single population group.
The infectious agent is spread through population from infected individuals
to susceptibles. At any given moment the population can be roughly clus-
tered into three distinct groups, i.e., S(t) susceptible, I(t) infected, and R(t)
recovered. We will assume random mixing among those population compart-
ments. The assumption of a uniform spatial population distribution allows
us to employ the concept of random mixing of all population groups. The
recovered group is assumed to acquire immunity and does not interact with
either of the other groups. To study the evolution of the disease spread we



then have the following nonlinear model:

S =—aS(I/N)
I.: an(S/N) — (052 + a3)I (1)
R = OéQI

Here, oy is the infection rate, s is the recovery rate, ag is the death rate
due to the infection and N(t) is the total population size N(t) = (S(¢) +
R(t) +1(t)),

N = —0531. (2)

We use dot for time derivative, i.e., S = dS/dt. The basic reproductive
number Ry is defined as Ry = a;/as. The system (1) states that the major
cause of population decline is due to the death of infected people. This
model is simplified compared to models of this type that usually include
birth rate and death rates due to normal causes, as well as loss of immunity
and other factors. However, for the study of severe pandemic disease spread
when characteristic times are of the order of days and death rates are very
high compare to the death rate due to normal causes, the approximation
is justified. In addition, during normal flu seasons total deaths by other
causes roughly equals total births, and we assume the number of susceptibles
introduced by birth is low enough to be ignored.

There are two goals we would like to achieve. First, we wish to prove the
concept that the model can correctly describe the spread of the infection not
only qualitatively but quantitatively, provided the assumptions mentioned
above hold true. The second goal is to estimate parameters and analyse the
relation of the parameters to other macroscopic quantities like the density of
the population, demographic and transportation specifics. There are argu-
ments in the literature stating that the model (1) can be generalized for the
multi-season case, if one introduces time dependency for the interaction co-
efficients. One of the arguments to support this is the fact that excess death
rates for influenza have consistent repeating patterns over many years, see
Fig. (1). The assumption being made is that the probability of interac-
tion has a time component due to some fundamental but unknown reason.
However even today there is no clear explanation for that reason and time
structure for interaction is introduced ad hoc. We will concentrate our study
on single-season outbreaks. We will estimate the parameters for the model
employing the Random Collocation Least Squares (RCLS) technique. We
will exploit a real data set acquired from the US National Center of Health
Statistics (NCHS) and also the data provided to us by the Influenza Branch
of the Centers for Disease Control and Prevention (CDC).



3 Numerical model and data

The data set we analyze represents the set of historic time-series of excess
death rates due to pneumonia and influenza, reported by the NCHS on
the weekly basis (MMWR weekly reports). The data is for 122 major US
metropolitan areas and the total time-series is for a period of about four
years for each of the cities. There are errors in this data set due to the way
the data is collected and reported. The lack of direct information about the
actual reported cases of infected people as well as those recovered (removed)
does not allow one to use the model (1) directly for parameter estimation.
However, we can exploit the structure of the model to derive an equation
governing the evolution of the death rates. To proceed, we reduce the system
(1) to a single equation by substituting N — R — I for S, where

t

R(t) = R(t()) + ) aoIdt (3)
and .
N(t) = N(t) — /t asIdt (4)

This yields

i = (an/N) [N(to) - /tz asldt — (R(to) + | asldt) — I] T (g +ag)l

to
(5)
where t( is some arbitrary time before ¢. In the original system (1) the term
agl represents the influenza death rate. Thus, we can rewrite equation
(5) in terms of the death-rate D(t) = asl(t). Let us also expand N in
denominator and keep all terms up to the order O(6N). This means we will
keep N (tp) + 6N in the numerator and N(%p) in the denominator.

D = |75 (N(to) — R(to)) — (02 + a3)| D—

(a2+as) t 2
a;:goj\zf(t:)s D fto Ddt — a3]%1(t0)D

(6)

From (6) one can see that just from one time-series for D(¢) it is possible
to estimate all of the parameters a;. Of those parameters ao, the recovery
rate is fairly well known, and the inverse of as is close to one week (see [12]).
We will use this information and fix this parameter to the value ay = 1.3
for weekly sampled data. We will assume R(%y) = 0 at the beginning of the
season tg and put N(tg) = Np. In a typical flu season (16 weeks) in the US
about 60 million people are infected and about 20,000 of these people die of



influenza [5] - [6]. Thus, a3 is on the order of ~ 2 x 1075. Clearly, a > a3
and we can use «y instead of as + a3 for the second term in front of the
integral, however we will keep a3 in the first term because «; can be close
to ay. Equation (6) then becomes

) t
D:(al—ag—a3)D— o (052D Ddt+D2)a (7)
Noas to
or equivalently
) t
Dh=&D— 52(a2D/ Ddt + D?), (8)
to
where
Sl=o01 —ay — o3
(9)

&2 = a1 /(a3 No).

The parameters a1, as are

a1 = Noba (&1 + a2)/(No&2 — 1)
a3 = ({1 + a2)/(No&2 — 1)

The data provided by the US NCHS is a combination of reported deaths
due to influenza and pneumonia. The pneumonia death rate is a combination
of influenza viral pneumonia, secondary bacterial pneumonia that is a con-
sequence of primary influenza infection and pneumonia due to causes other
than influenza. This makes the estimation analysis a bit more complicated,
because one should separate the dynamics of influenza from the pneumonia
death rates before one can apply estimation procedure based on equation
(8). However the dynamics of pneumonia are rather “slow” when compared
to the influenza outbreaks. We could make a reasonable assumption that
the reported death rate is C(t) = D(t) + P(t), where D(¢) is the number of
deaths per unit time due to influenza and P(t) is the number of pneumonia
deaths per unit time not caused by influenza. It is also natural to assume
that (dC(t)/dt) > (dP(t)/dt) so P(t) ~ Py = constant, meaning that the
death rates due to pneumonia not due to influenza are fairly constant com-
pared to the death rates due to the influenza. Taking this assumption one
can write the equation for combined reported death rates C(t) as follows:

(10)

C = (1 + 26, P)C — s [L CdtC — 6,07~ "
(E1Py + &PE) + &Pocs(f§ Cdt +tC) — &an Pt

It is convenient to rewrite equation (11) as
. t t
Czﬂlc—ﬂg/ CdtC—ﬁgCQ—B4+ﬁ5(/ Cdt +tC) — Bt (12)
0 0
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where the parameters j3; are:

B1 = (&1 + 26 P)

Bo = Ea0p

B3 =&

Bi = (1P + E2F2) (13)
Bs = {2 Py

Bs = &Piay

4 Random Collocation Least Squares

Before providing a formal definition of RCLS , here is an informal description
of how it works. Let us consider one differential equation for the variable
z(t) with a single constant coefficient « that needs to be determined,

&= af(z(t),1) (14)

In the integral form the equation above can be written

#(b) — (a) = o / F(@(s), s)ds (15)

For the sake of simplicity, assume that f(z,t) is a linear function with respect
to variable z(t). If we have noiseless data for some interval ¢ € [a,b] then
for the non-singular case
z(b) — z(a)
o= —-——
b
Ja f(x(s), s)ds

If we have noisy data, i.e., z(t) = z(t) + €(¢), one can immediately see that
the estimator (16) will be biased and interval dependent

z(b) + €(b) — z(a) — €(a)
I3 £ (@(s) + €(s), 5)ds

For linear f(z,t) infinite data samples and zero-mean independently identi-
cally distributed noise (iid) €

(16)

a =

(17)

[ 1ate) + ete), o) = Jim S 1w ) 88 Jim 3 e t) Ao

(18)
Here the lim converges in mean-square (MS) and, therefore, also it con-
verges in probability, see, e.g., [8]. To make the estimator (17) consistent,



we perform the following. If we generate on the interval ¢ € [a, b] the smaller
intervals [tp,,tk;] (each of which we number as i), and each t,, and tj, are
uniformly randomly distributed we get the following

o D @) + et — wltn) — en) — 2 (o) ~ o)) (19)

as N — oo. Since the equation (16) is valid for arbitratry intervals [a, b] we

can write
Eiv(j(tkl) B j(tm))
SNk £(3(s), 5)ds

as N — oo. From equation (20), we have a consistent estimator of a. We
will apply now the same idea for estimation of parameters to the equation
(11).

The data we work with has noise, which perhaps vaguely, we will asso-
ciate with the accuracy of measurements. Let us rewrite equation (12) as
follows:

-« (20)

C = B1C — BoUC — 302 — By + B5(T + tC) — et

¥ =C,0(0) =Py (21)

Now, introduce the following:

[FCdt = Cp — Cp = Dgm

[¥Cdt = Iy = I — Ing

ket = gy, (22)
Sy wCdt = [¥ 0dt = (1/2)92[5 = (1/2) I (T 0 + In)

S (U0 dt = [¥ (U +10)dt = Utk = (T otk — Inotn)

Integration of first equation in (21) over the arbitrary time interval [t,, tx]
results in the following equation:

D = Bl — B2(1/2) Iy 1y (Iko + Inp) — B3Jkn—

Balth — tn) + Bs(Tnots — Lnotn) — fo(1/2)( — £2) (23)

The measurements of death rates are C, = C (tx) + €k, where € is cu-
mulative error due to measurement errors and fundamental model accuracy.
We assume that the errors ¢ are independent and unbiased for each data
point, i.e., E[e] = 0, where symbol E[...] means averaging over ensemble of
measurement processes. Also assume that Elezen] = 0264y, i.e., measure-
ment errors have constant dispersion and represent additive noise. So far



we have not made any assumptions about the structure of the distribution
of €. For the measurements C' we have:

JECdt =)~ Co+ e — en = Dy + e = By

[5Cdt ~ 1,

JEC2dt ~ Ty + 02 (ty — tn) (24)
Sy ®Cdt ~ (1/2) I (T + Ino)

S (8 + tC)dt = (It — Inotn)

Since all ¢ are independent we have E[Ak,n] = Agp-

Let us now consider a set of integrations over the different time intervals
[tns, tki], i-e., we randomly sample the two points - the start of the interval
tni and the end of the interval ¢;. For each sample interval [t,,, tx;] we have
a set of integrals Aki’ni, Ii; ni» Jk;ngs Ik; 0 and I, 0. We repeat this sampling
process using a uniformly distributed random number generator to obtain
the start and the end interval locations. Now, if we sum up all those linear
relations together we get the following:

Zi Aki,ni = ﬁl Ez Iki,ni - /32% Zz Iki,ni (Iki,O + Im,O) - /63 Zz Jki,ni_
(=B30% + Ba) Xi (tri — tni) + Bs 2 (Tns 0tk; — Ingotn;) — B6(1/2) 2 (87, — t7,)

(25)

We use the assumption here that in the limit of infinite data and infinite

random sampling ), Aki,m =30 Dpym; T €k — €n; = 22 Dk ;- For prac-

tical purposes we should have at least M sampling intervals, where M - is

the number of data points.

We can now introduce the estimating function F'({1, &2, Py), where

F= Zz Aki,ni - [(fl + 252P0) Zz Iki;ni - 52‘12% Zz Iki;"i (Iki,o + Im,O)_
€232 Jkim; — (=620 + &Py + E2P5) Y (thi — tni) +
202 Py 3 (T, otk — Iniotn;) — L2020 PF(1/2) 32 (5, — t2))]

(26)
The solution of the nonlinear problem F' — 0 provides the unknown param-
eters &1, & and Py. One can see from (26) that for the fixed parameter Py
the problem becomes linear in £; and &. Indeed we can rewrite the above
equation as follows:

F =YD — 60 Tens — Po X (tki — tn)]+
52[_%042 ZZ Iki,ni (Ik}i,o + Ini,O) - Zz Jki,ni + CMQP() Ez (Iki,otki - Im,Otm)_l_
2Py Yo Thiny — 02PF(1/2) 555 (8, — 1) — (P§ — 0%) X (thi — tni)]
(27)



The term (PZ — 02), where the noise o2 is unknown, can be reasonably well

approximated by just P? if the noise level o stays not greater then 10% of
p,.

To solve (27) we do a line search in Py, i.e., we fix Py at various values,
solve linear optimization problems F'(1, &2|Py) — min, and then select &1, &2
and Py that provide the best minimum solution for F. Having solved (27)
we estimate the parameters o and ag using (10).

5 Results

As was mentioned above, we consider single-season outbreaks. The results
of parameter estimation for the 1996-1997 and 1997-1998 seasons are pre-
sented in Figs. (2)-(7) and Tables 1 and 2. In the Figs. (2)-(3) we present a
comparison of the data with the results of direct simulation of equation (12)
with the parameters estimated using the same season data. One can confirm
a rather adequate resolution of the epidemic amplitude, the location of the
maximum, and the initial ramp. To estimate confidence intervals for the pa-
rameters we used parametric bootstrap (see Efron [7]). The results for the
parameters are presented in Figs. (4) - (7). From the bootstrap histograms
we estimate the mean, the median and 95% confidence intervals. Table 1
contains 1996-1997 season estimates for the parameters «, the basic repro-
ductive number Ry, death level due pneumonia P, and the expectancy of a
person infected by influenza person to die from the infection ay/(ag + as).
Table 2 contains the estimates for the season of 1997-1998. The parameter
estimates were close for both epidemic seasons.

Using estimates for Py and as for each of the seasons, we can now
estimate the total number of infected people. Indeed, from the defini-
tion of the death rate D(t) = asl(t), it follows that I(t) = D(t)/as or
I(t) = (C(t) — Py)/as3. The total number of infected people for one season
then is

It = [ 1(dt = [ [C(t) - Ril/asdt, (28)

where integration is taken for one season. Our estimate of I, for the season
of 1996-1997 is 44 x 10° and 49 x 10° for the season of 1997-1998. Taking
into account that we used for our analysis the mortality data for 122 US
metropolitan areas with total population about 130 million, the estimation
for the whole country should double those numbers.



6 Discussion

In this paper, we developed a method for statistically separating influenza
related mortality from other source of pneumonia mortality. Based on the
SIR epidemic model, we estimated important epidemiological parameters.
Our model provides good fits to the observed influenza mortality data for
the two influenza seasons that we investigated. Thus, the model could be
potentially used to predict influenza mortality in the future.

Our average estimate of the reproductive number is Ry = 1.3. This in-
dicates, that in a completely susceptible population, a randomly selected
infected person would infect on the average 1.3 other people. This number
is somewhat lower than previous estimates that ranged from 1.4 - 2.6 [6].
Further our mean estimate of the influenza case fatality ratio is 9.1 x 10~°.
This is somewhat less, but the same order of magnitude of previous esti-
mates of around 33 x 1075 using different, less direct methods [4] - [6]. Our
average estimate of the total number of people infected in the U.S. for an
influenza, season is 93 million. This is somewhat larger than past estimates
of around 60 million [6]. However, this latter estimate is based on reported
influenza illness rates which are known to be underestimated. Thus, our
model based estimates should prove useful in assessing influenza infection
and fatality rates. We developed the method of random collocation least
squares (RCLS). We compared the use of RCLS method with the Extended
Kalman Filtering (EKF) applied to SIR and found the RCLS more robust
and accurate mostly because linearized system (1) used by EKF is globally
unstable along the solution trajectory. For small sets of highly noisy data we
found that RCLS works better than many traditional estimation tools in-
cluding regular least-squares. Part of the reason for this is because we work
with differential equations and process time-derivative information which
acts as a high-pass filter of noisy data. Recently, Markov chain Monte Carlo
methods have been used with success for fitting SIR models to epidemic
data [13]. We have modeled two seasons and found parameters for each of
those seasons. The model and estimation procedure that we have developed
here can be used in the future to help project the mortality rates for future
epidemics. We can use these methods to estimate important epidemiologic
parameters, such as Ry, from reported mortality data. In the past, a similar
model has been coupled with the global transportation network to predict
the spread of pandemic influenza [10] - [11]. Our plan is to adapt the model
developed here to predict yearly spread of influenza among population cen-
ters in the US. This approach will be further adapted to predict the spread
of other infectious agents that arise in nature or are intentionally released
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as in the possible case of bioterrorist smallpox [14].
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mean median 95% conf.
ai 1.62 1.63 (1.59:1.67)
as 1.22 x 107% [ 1.23 x 107* | (9.33 x 1077 : 1.54 x 10~%)
Ry = a1/ 1.24 1.26 (1.22:1.28)
as/(ag +az) [ 9.41 x 107° | 9.47 x 107° | (7.20 x 107° : 1.19 x 10~ %)
Py 658 662 (630:690)

Table 1: Parametric bootstrap estimates of parameters for the epidemic
season of 1996-1997
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mean median 95% conf.
ai 1.69 1.70 (1.65:1.73)
as 1.13 x107% [ 1.13 x 10~* | (8.80 x 1077 : 1.38 x 10~%)
Ry = a1/ 1.30 1.31 (1.27:1.34)
as/(as +az) | 8.67 x 107° | 8.73 x 107° | (6.80 x 107° : 1.07 x 10~ %)
Py 663 666 (630:702)

Table 2: Parametric bootstrap estimates of parameters for the epidemic
season of 1997-1998
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Figure 1: Mortality and Morbidity data for pneumonia and influenza. Excess
death rates for all 122 US cities combined
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Figure 2: Comparison of actual data for total US reported death rates in
1996-1997 vs simulation with estimated parameters obtained by RCLS. Cir-
cles - weekly MMWR data, solid line - weekly sampled (integrated) solution
of equation (11)
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Figure 3: Comparison of actual data for total US reported death rates in
1997-1998 vs simulation with estimated parameters obtained by RCLS. Cir-
cles - weekly MMWR data, solid line - weekly sampled (integrated) solution
of equation (11)
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